Restify Commands with the Request Pattern
REST is all the rage. It provides a networked approach to exposing data and services, both internally within a company and to partners. Here, we explore a novel approach to providing a RESTful API to a set of existing commands. Business Problem: expose Commands via REST Many organizations have made considerable software available through Unix-like commands. Imagine an Enterprise, well, the Enterprise, that wishes to provide RESTful APIs to commands like: OrderSickLeave , IncreaseSpeed , SelfDestruct … hundreds of them… Each of these commands is backed by some software, say a Java Class of some sort. They’d like to publish this functionality, as follows: Restify – provide a RESTful API for each command. The REST attributes are the command arguments, above Validate – before the commands is issued, validate the arguments (does exist, is the a positive number, etc) Secure – ensure the commands are available as appropriate Background: Espresso creates RESTful API for SQL data Espresso creates RESTful APIs, principally for SQL data. Some key functionality is described below. API Creation You connect Espresso to a database, and it creates a RESTful endpoint for each table, view and Stored Procedure. The API supports the usual RESTful operations of Get (including filters based on HTTP arguments), and update (Put, Post and Delete). Validation Rules You can specify validation rule expressions that are automatically executed on update requests. For example, you might specify a rule that balance <= creditLimit. Validation rules are part of the larger notion of business logic, which includes computations (the balance is the sum of the unpaid order amounts). Computations can chain, and validations work over computed data, so you can solve remarkably complicated problems with a few simple rules. Extensibility Espresso creates a server-side JavaScript Domain Object for each table, providing access to attributes (customer.balance), and persistence (customer.save()). The objects encapsulate their integrity in two ways: Rule Invocation – update requests trigger the relevant validation / computation rules Events – you can also associate server-side JavaScript event handlers with a table. These fire as update requests are processed The Event handlers can invoke anything in the JVM, such as jar file code you can load into Espresso, other RESTful services, etc. Background: Command Pattern Imagine a word processor, providing functionality to make a string of selected text bold, another bit of functionality for italics, and so forth. Now imagine we wish to provide Undo functionality. Not possible unless we save the commands. So, the Command Pattern emerged: create a class for each Command creating an instance “does” the command (e.g., make text bold), where the constructor arguments provide the necessary information (text start, length) maintain an ordered list of commands (object instances) require the Command Classes to provide an Undo method to reverse the effects of the constructor (e.g., remove the bold) Database Adaption: insert logic on a Request Table We can see this same pattern in database applications, where we wish to keep a record of transactions. For example, instead of just changing a salary (and forgetting who, when, old values etc), we create a SalaryAction(employeeId, raisePercent). We can think of this as a Request Table. The logic on the SalaryAction table might give the raise, but also validate (is the percent too big? is the resultant salary out of range?), and record who, when etc. Restify Commands with Request Tables So we can combine these notions: Create a database with table for each Command (OrderSickLeave, IncreaseSpeed, etc), with columns for command arguments. We can also provide columns for admin data (date executed, etc) Leverage Espresso to Restify these Declare Validation Logic JavaScript table events execute the command We can now use this approach to Restify our Enterprise commands, as described below. Command Requests Database The lower 3 tables are the Request Tables. They each have Foreign Keys to the Crew table, simply identifying the source of the request (this is optional). Load into Espresso We next connect Espresso, which discovers these tables and creates a Default RESTful API to them. We can view it in a test tool immediately: We can also define a Custom API, exposing just the elements we wish: Validate Command Parameters The following rules apply to Posts against our Command Request tables. Here we ensure that the IncreaseSpeed request has a argument (attribute) for warpFactor, that it be between 0 and 10, and that the optional emergencyReason parameter is supplied if the warpFactorexceeds 8 Live Browser – view, post data You can use the API tool, or this automatically constructed app: Invoke existing code Finally, we add server-side JavaScript logic (stubbed here) to execute our command. This would execute existing code in a loadable jar. Conclusion: 4 hour project This project was completed in about a half a day.
June 30, 2015
by
Val Huber
CORE
·
4,774 Views