Memoizing Functions With Core Java 9
Java 9 will open a couple of new doors for memoizing functions. Starting with a base function, we'll work our way to NFunctions, memoizing along the way.
Join the DZone community and get the full member experience.
Join For FreeA function is memoizing if the function will ever give the same result for the same input. And here we mean exactly the same result. Let's say the result will be an instance of a car. The result for the same input would give back the instance of the car. Not only an equal one.
But let's start with the beginning.
As a starting point, I will use the following function.
Function<Integer, Integer> squareFunction = x -> {
System.out.println("In function");
return x * x;
};
Here I am using System.out only to show on command line how often this method was invoked. I know that this is nothing for production!
If I call this function twice with the same input, the System.out would be on screen two times. So let's define a memoized function.
Function<Integer, Integer> memoizationFunction = Memoizer.memoize(squareFunction);
Now I want to have System.out only one time on screen, expecting that the result was calculated one time. What do we have to do to get the result? This work is based on the another article I found here on DZone Java 8 Automatic Memoization.
The solution here is based on the method (class Map) introduced with Java 8. With Java 8, you could provide a lambda to calculate a value corresponding to a key, if the value is not available. This means that if you request a key/value pair the first time, the lambda will be executed to create the value. At the same time, it isn't stored in the map. For our solution the ``ConcurrentHashMap``` is used.
public class Memoizer<T, U> {
private final Map<T, U> memoizationCache = new ConcurrentHashMap<>();
private Function<T, U> doMemoize(final Function<T, U> function) {
return input -> memoizationCache.computeIfAbsent(input, function);
}
public static <T, U> Function<T, U> memoize(final Function<T, U> function) {
return new Memoizer<T, U>().doMemoize(function);
}
}
And now we have the first version, but only for Function<T,U>
. But what could we do with a BiFunction<T1,T2, R>
?
Let's play around with the function itself. We could transform BiFunction<T1,T2,R>
BiFunction<Integer,Integer,Integer> biFunction = (x,y) -> x * y;
into Function<T1,Function<T2,R>>
.
Function<Integer, Function<Integer, Integer>> biFunction = x -> y -> x * y;
With this, we are able to build a memoized function again. This would end up in the first version like the following:
Function<Integer, Function<Integer,Integer>> memoizationFunction
= Memoizer.memoize(x -> Memoizer.memoize(y -> x * y));
So far so good, but the usage itself is not nice. First is the transformation into the function of a function, instead of using the original BiFunction, and the second is the usage of the memoized function itself.
public static void main(String[] args) {
System.out.println("memoizationFunction = " + memoizationFunction.apply(2).apply(3));
System.out.println("memoizationFunction = " + memoizationFunction.apply(2).apply(3));
}
Now we could use the original BiFunction inside the memoized Function.
BiFunction<Integer,Integer,Integer> mul = (x, y) -> x*y;
Function<Integer, Function<Integer,Integer>> memoizationFunction
= Memoizer.memoize(
x -> Memoizer.memoize(
y -> mul.apply(x,y)));
With this, we could make it a little bit more comfortable and provide a create method. The biggest change here is the introduction of our Supplier<Integer>
. So we changed the BiFunction into BiFunction<Integer, Integer, Supplier<Integer>>
. Now we could use the method create with a lambda expression as an argument to get a memoized Function. But the result is still Function<Integer, Function<Integer, Integer>>
public static Function<Integer, Function<Integer, Integer>> create(
BiFunction<Integer, Integer, Supplier<Integer>> biFuncSupplier) {
return Memoizer.memoize(x -> Memoizer.memoize(y -> biFuncSupplier.apply(x, y).get()));
}
public static void main(String[] args) {
final Function<Integer, Function<Integer, Integer>> function = create((x, y) -> () -> {
System.out.println("execute x/y = " + x + " / " + y);
return x * y;
});
System.out.println("memoizationFunction = " + function.apply(2).apply(3));
System.out.println("memoizationFunction = " + function.apply(2).apply(3));
}
But we don't want to transform the original BiFunction. The transformation could be done in a generic way.
public static Function<Integer, Function<Integer, Integer>> transform(
final BiFunction<Integer, Integer, Integer> biFunc) {
return create((x, y) -> () -> biFunc.apply(x, y));
}
private static Function<Integer, Function<Integer, Integer>> create(
BiFunction<Integer, Integer, Supplier<Integer>> biFuncSupplier) {
return Memoizer.memoize(
x -> Memoizer.memoize(
y -> biFuncSupplier.apply(x, y).get()));
}
public static void main(String[] args) {
final Function<Integer, Function<Integer, Integer>> function = transform((x, y) -> {
System.out.println("execute x/y = " + x + " / " + y);
return x * y;
});
System.out.println("memoizationFunction = " + function.apply(2).apply(3));
System.out.println("memoizationFunction = " + function.apply(2).apply(3));
}
Or if you want to remove the types with generics....
public static <T1, T2, R> Function<T1, Function<T2, R>> transform(
final BiFunction<T1, T2, R> biFunc) {
return create((x, y) -> () -> biFunc.apply(x, y));
}
private static <T1, T2, R> Function<T1, Function<T2, R>> create(
BiFunction<T1, T2, Supplier<R>> biFuncSupplier) {
return Memoizer.memoize(x -> Memoizer.memoize(y -> biFuncSupplier.apply(x, y).get()));
}
public static void main(String[] args) {
final Function<Integer, Function<Integer, Integer>> function = transform((x, y) -> {
System.out.println("execute x/y = " + x + " / " + y);
return x * y;
});
System.out.println("memoizationFunction = " + function.apply(2).apply(3));
System.out.println("memoizationFunction = " + function.apply(2).apply(3));
}
Now we are able to transform the BiFunction<T1, T2, R>
, but the result is a Function<T1, Function<T2, R>>
This is not nice to use, so we want to transform it back to a BiFunction<T1, T2, R>
.
public static <T1, T2, R> BiFunction<T1, T2, R> prepare(
final Function<T1, Function<T2, R>> transformed) {
return (x, y) -> transformed.apply(x).apply(y);
}
Finally, we are able to transform in both directions. BiFunction<T1, T2, R>
-> Function<T1, Function<T2, R>>
-> BiFunction<T1, T2, R>
.
All together now!
public static <T1, T2, R> BiFunction<T1, T2, R> prepare(
final Function<T1, Function<T2, R>> transformed) {
return (x, y) -> transformed.apply(x).apply(y);
}
public static <T1, T2, R> Function<T1, Function<T2, R>> transform(
final BiFunction<T1, T2, R> biFunc) {
return create((x, y) -> () -> biFunc.apply(x, y));
}
private static <T1, T2, R> Function<T1, Function<T2, R>> create(
BiFunction<T1, T2, Supplier<R>> biFuncSupplier) {
return Memoizer.memoize(
x -> Memoizer.memoize(
y -> biFuncSupplier.apply(x, y).get()));
}
public static void main(String[] args) {
final Function<Integer, Function<Integer, Integer>> function = transform((x, y) -> {
System.out.println("execute x/y = " + x + " / " + y);
return x * y;
});
System.out.println("memoizationFunction = " + prepare(function).apply(2,3));
System.out.println("memoizationFunction = " + prepare(function).apply(2,3));
}
After we found out how to transform in small steps, we were able to merge everything together in a smaller method. The result looks like the following:
public static <T1, T2, R> BiFunction<T1, T2, R> memoize(final BiFunction<T1, T2, R> biFunc) {
final BiFunction<T1, T2, Supplier<R>> biFuncSupplier = (x, y) -> () -> biFunc.apply(x, y);
final Function<T1, Function<T2, R>> transformed
= Memoizer.memoize(
x -> Memoizer.memoize(
y -> biFuncSupplier.apply(x, y).get()));
return (x, y) -> transformed.apply(x).apply(y);
}
public static void main(String[] args) {
final BiFunction<Integer, Integer, Integer> function = memoize((x, y) -> {
System.out.println("execute x/y = " + x + " / " + y);
return x * y;
});
System.out.println("memoizationFunction = " + function.apply(2,3));
System.out.println("memoizationFunction = " + function.apply(2,3));
}
Now NFunctions aren't so far away. Let's see how we could do it with three params. The first thing we have to create is a TriFunction<T1,T2,T3,R>
, because it was not part of the JDK until now.
@FunctionalInterface
public interface TriFunction<T1, T2,T3, R> {
R apply(T1 t1, T2 t2, T3 t3);
default <V> TriFunction<T1, T2,T3, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T1 t1, T2 t2, T3 t3) -> after.apply(apply(t1, t2, t3));
}
}
And finally, the memoize looks like....
public static <T1, T2,T3, R> TriFunction<T1, T2,T3, R> memoize(final TriFunction<T1, T2,T3, R> threeFunc) {
final TriFunction<T1, T2,T3, Supplier<R>> threeFuncSupplier
= (x, y, z) -> () -> threeFunc.apply(x, y,z);
final Function<T1, Function<T2, Function<T3, R>>> transformed
= Memoizer.memoize(
x -> Memoizer.memoize(
y -> Memoizer.memoize(
z -> threeFuncSupplier.apply(x, y,z).get())));
return (x, y, z) -> transformed.apply(x).apply(y).apply(z);
}
public static void main(String[] args) {
final TriFunction<Integer, Integer, Integer, Integer> function = memoize((x, y, z) -> {
System.out.println("execute x/y/z = " + x + " / " + y + " / " + z);
return x * y * z;
});
System.out.println("memoizationFunction = " + function.apply(2,3,-1));
System.out.println("memoizationFunction = " + function.apply(2,3,-1));
}
So, now we have everything for an NFunction together!
Published at DZone with permission of Sven Ruppert. See the original article here.
Opinions expressed by DZone contributors are their own.
Comments