Joining the Big Leagues: Tuning Jenkins GC for Responsiveness and Stability
Learn how to tune Jenkins Java settings to make your masters more responsive and stable, especially with large heap sizes.
Join the DZone community and get the full member experience.
Join For FreeToday, I'm going to show you how easy it is to tune Jenkins Java settings to make your masters more responsive and stable, especially with large heap sizes.
The Magic Settings
- Basics:
-server -XX:+AlwaysPreTouch
- GC Logging:
-Xloggc:$JENKINS_HOME/gc-%t.log -XX:NumberOfGCLogFiles=5 -XX:+UseGCLogFileRotation -XX:GCLogFileSize=20m -XX:+PrintGC -XX:+PrintGCDateStamps -XX:+PrintGCDetails -XX:+PrintHeapAtGC -XX:+PrintGCCause -XX:+PrintTenuringDistribution -XX:+PrintReferenceGC -XX:+PrintAdaptiveSizePolicy
- G1 GC settings:
-XX:+UseG1GC -XX:+ExplicitGCInvokesConcurrent -XX:+ParallelRefProcEnabled -XX:+UseStringDeduplication -XX:+UnlockDiagnosticVMOptions -XX:G1SummarizeRSetStatsPeriod=1
- Heap settings: set your minimum heap size (
-Xms
) to at least half of your maximum size (-Xmx
)
Now, let's look at where those came from! We're going to focus on garbage collection (GC) here and dig fast and deep to strike for gold; if you're not familiar with GC fundamentals, take a look at this source.
Because performance tuning is data-driven, I'm going to use real-world data selected from three of our customers running large masters (all are Global 500 companies; two are in the top 100).
What we're not going to do: Jenkins basics, or play with max heap. See the section about what you should do before tuning. This is for cases where we really do need a big heap and can't easily split our Jenkins masters into smaller ones.
The Problem: Hangups
Symptom: Users report that the Jenkins instance periodically hangs, taking several seconds to handle normally fast requests. We may even see lockups or timeouts from systems communicating with the Jenkins master (build agents, etc). In long periods of heavy load, users may report Jenkins running slowly. Application monitoring shows that during lockups, all or most of the CPU cores are fully loaded, but there's not enough activity to justify it. Process and JStack dumps will reveal that the most active Java threads are doing garbage collection.
Company A had this problem. Their Jenkins Java arguments are very close to the default, aside from sizing the heap.
- 24 GB max heap, 4 GB initial, default GC settings (ParallelGC)
- A few flags set (some coming in as defaults):
-XX:-BytecodeVerificationLocal -XX:-BytecodeVerificationRemote -XX:+ReduceSignalUsage -XX:+UseCompressedClassPointers -XX:+UseCompressedOops -XX:-UseLargePagesIndividualAllocation
After enabling garbage collection (GC) logging, we see the following rough stats:
Diving deeper, we get this chart of GC pause durations:
Key stats:
- Throughput: 99.64% (percent of time spent executing application code, not doing garbage collection)
- Average GC time: 348 ms (ugh!)
- GC cycles over 2 seconds: 36 (2.7%)
- Minor/Full GC average time: 263 ms/2.803 sec
- Object creation and promotion rate: 42.4 MB/s and 1.99 MB/s
Explanation
As you can see, young GC cycles very quickly clear away freshly-created garbage, but the deeper old-gen GC cycles run very slowly (two to four seconds). This is where our problems happen. The default Java garbage collection algorithm (ParallelGC) pauses everything when it has to collect garbage (often called a "stop the world pause"). During that period, Jenkins is fully halted: normally (with small heaps) these pauses are too brief to be an issue. With heaps of 4 GB or larger, the time required becomes long enough to be a problem: several seconds over short windows, and over a longer interval you occasionally see much longer pauses (tens of seconds or minutes).
This is where the user-visible hangs and lockups happen. It also adds significant latency to those build and deploy tasks. In periods of heavy load, the system was even experiencing hangs of 30+ seconds for a single full GC cycle. This was long enough to trigger network timeouts (or internal Jenkins thread timeouts) and cause even larger problems.
Fortunately, there's a solution: the concurrent low-pause garbage collection algorithms, Concurrent Mark Sweep (CMS) and Garbage First (G1). These attempt to do much of the garbage collection concurrently with application threads, resulting in much shorter pauses (at a slight cost in extra CPU use). We're going to focus on G1 because it is slated to become the default in Java 9 and is the official recommendation for large heap sizes.
Let's see what happens when someone uses G1 on a similarly-sized Jenkins master at company B (17 GB heap).
Their settings:
- 16 GB max heap, 0.5 GB initial size
- Java flags (mostly defaults, except for G1):
-XX:+UseG1GC -XX:+UseCompressedClassPointers -XX:+UseCompressedOops
GC log analysis:
Okay, much better! Most of the GC pauses are under well under two seconds, but we have 11 outliers: long, full GC pauses of 2-12 seconds. Those are troubling; we'll take a deeper dive into their causes in a second. First, let's look at the big picture and at how Jenkins behaves with G1 GC for a second company.
Key stats:
- Throughput: 98.76% (not great, but still only slowing things down a bit)
- Average GC time: 128 ms
- GC cycles over 2 seconds: 11, 0.27%
- Minor/Full GC average time: 122 ms/1 sec 232 ms
- Object creation and promotion rate: 132.53 MB/s and 522 KB/s
Much better all around! Some improvement may be expected from a 30% smaller heap, but not that much. Let's look at another company running G1.
G1 Garbage Collection at Company C (24 GB heap):
Their settings:
- 24 GB max heap, 24 GB initial heap, 2 GB max metaspace
- Some custom flags:
-XX:+UseG1GC -XX:+AlwaysPreTouch -XX:+UseStringDeduplication -XX:+UseCompressedClassPointers -XX:+UseCompressedOops
Clearly, they've done some garbage collection tuning and optimization. The AlwaysPreTouch pre-zeros allocated heap pages, rather than waiting until they're first used. This is suggested especially for large heap sizes because it trades slightly slower startup times for improved runtime performance. Note also that they pre-allocated the whole heap. This is a common optimization.
They also enabled StringDeduplication, a G1 option introduced in Java 8 Update 20 that transparently replaces identical character arrays with pointers to the original, reducing memory use (and improving cache performance). Think of it like String.intern()
but it silently happens during garbage collection. This is a concurrent operation added on to normal GC cycles, so it doesn't pause the application. We'll look at its impacts later.
Looking at the basics:
This is a similar picture to company B, but it's hidden by the sheer number of points (this is a longer period here of one month). Those same occasional Full GC outliers are present!
Key stats:
- Throughput: 99.93%
- Average GC time: 127 ms
- GC cycles over 2 seconds: 235 (1.56%)
- Minor/Full GC average time: 56 ms / 3.97 sec
- Object creation and promotion rate: 34.06 MB/s and 286 kb/s
Overall fairly similar to company B: ~100 ms GC cycles, all the minor GC cycles are very fast. Object promotion rates sound similar.
Remember those random long pauses?
Let's find out what caused them and how to get rid of them. Company B had 11 super-long pause outliers. Let's get some more detail, by opening GC Logs in GCViewer. This tool gives a tremendous amount of information. Too much, in fact. I prefer to use GCEasy.io except where needed. Since GC logs do not contain compromising information (unlike heap dumps or some stack traces), web apps are a great tool for analysis.
What we care about are at the Full GC times in the middle (highlighted). See how much longer they are vs. the young and concurrent GC cycles up top (two seconds or less)?
Now, I lied a bit earlier - sorry! For concurrent garbage collectors, there are actually three modes: young GC, concurrent GC, and full GC. Concurrent GC replaces the Full GC mode in Parallel GC with a faster concurrent operation that runs in parallel with the application. But in a few cases, we will are forced to fall back to a non-concurrent Full GC operation, which will use the serial garbage collector. That means that even if we have 30+ CPU cores, only one is working. This is what is happening here, and on a large heap, multicore system, it is slow. How slow? 280 MB/s vs. 12487 MB/s for company B (for company C, the difference is also about 50:1).
What triggers a full GC instead of concurrent:
- Explicit calls to
System.gc()
: The most common culprit; often tricky to trace down. - Metadata GC Threshold: Metaspace (used for Class data mostly) has hit the defined size to force garbage collection or increase it. Documentation is terrible for this. Stack Overflow will be your friend.
- Concurrent mode failure: Concurrent GC can't complete fast enough to keep up with objects the application is creating (there are JVM arguments to trigger concurrent GC earlier).
How do we fix this?
For explicit GC:
-XX:+DisableExplicitGC
will turn off Full GC triggered bySystem.gc()
. This is often set in production, but the below options are a bit safer.- We can trigger a concurrent GC in place of a full one with
-XX:+ExplicitGCInvokesConcurrent
. This will take the explicit call as a hint to do deeper cleanup, but with less performance cost.
For the Metadata GC threshold:
Increase your initial metaspace to the final amount to avoid resizing (for example,
-XX:MetaspaceSize=500M
).
Company C also suffered the same problem with explicit GC calls, with almost all our outliers accounted for (230 out of 235) by slow, nonconcurrent Full GC cycles (all from explicit System.gc()
calls since they tuned metaspace):
Here's what GC pause durations look like if we remove the log entries for the explicit System.gc()
calls, assuming that they'll blend in with the other concurrent GC pauses (not 100% accurate, but a good approximation):
Company B:
The few long Full GC cycles at the start are from metaspace expansion. They can be removed by increasing initial Metaspace size, as noted above. The spikes? That's when we're about to resize the Java heap and memory pressure is high. You can avoid this by setting the minimum/initial heap to at least half of the maximum, to limit resizing.
Stats:
- Throughput: 98.93%
- Average GC time: 111 ms
- GC cycles over 2 seconds: 3
- Mino/Full or concurrent GC average time: 122 ms/25 ms (yes, faster than minor!)
- Object creation and promotion rate: 132.07 MB/s and 522 kB/s
Company C:
Stats:
- Throughput: 99.97%
- Average GC time: 56 ms
- GC cycles over 2 seconds: 0 (!!!)
- Minor/Full or concurrent GC average time: 56 ms/10 ms (yes, faster than minor!)
- Object creation and promotion rate: 33.31 MB/s and 286 kB/s
Okay, so we've tamed the long worst-case pauses!
But What About Those Long Minor GC Pauses?
Okay, now we're in the home stretch! We've tamed the old-generation GC pauses with the concurrent collection, but what about those longer young generation pauses? Let's look at stats for the different phases and causes again in GCViewer.
Highlighted in yellow we see the culprit: the remark phase of G1 garbage collection. This stop-the-world phase ensures we've identified all live objects, and processes references (more info here).
Let's look at a sample execution to get more info:
2016-09-07T15:28:33.104+0000: 26230.652: [GC remark 26230.652: [GC ref-proc, 1.7204585 secs], 1.7440552 secs]
[Times: user=1.78 sys=0.03, real=1.75 secs]
This turns out to be typical for the GC log. The longest pauses are spent in reference processing. This is not surprising because Jenkins internally uses references heavily for caching, especially weak references, and the default reference processing algorithm is single-threaded. Note that user (CPU) time matches real time, and it would be higher if we were using multiple cores.
So, we add the GC flag -XX:+ParallelRefProcEnabled
that enables us to use the multiple cores more effectively.
Tuning young generation GC further based on Company C:
Back to GCViewer we go, to see what's time-consuming with the GC for company C.
That's good because most of the time is just sweeping out the trash (evacuation pause). However, the 1.8 second pause looks odd. Let's look at the raw GC log for the longest pause:
2016-09-24T16:31:27.738-0700: 106414.347: [GC pause (G1 Evacuation Pause) (young), 1.8203527 secs] [Parallel Time: 1796.4 ms, GC Workers: 8] [GC Worker Start (ms): Min: 106414348.2, Avg: 106414348.3, Max: 106414348.6, Diff: 0.4] [Ext Root Scanning (ms): Min: 0.3, Avg: 1.7, Max: 5.7, Diff: 5.4, Sum: 14.0] [Update RS (ms): Min: 0.0, Avg: 7.0, Max: 19.6, Diff: 19.6, Sum: 55.9] [Processed Buffers: Min: 0, Avg: 45.1, Max: 146, Diff: 146, Sum: 361] [Scan RS (ms): Min: 0.2, Avg: 0.4, Max: 0.7, Diff: 0.6, Sum: 3.5] [Code Root Scanning (ms): Min: 0.0, Avg: 0.0, Max: 0.1, Diff: 0.1, Sum: 0.2] [Object Copy (ms): Min: 1767.1, Avg: 1784.4, Max: 1792.6, Diff: 25.5, Sum: 14275.2] [Termination (ms): Min: 0.3, Avg: 2.4, Max: 3.5, Diff: 3.2, Sum: 19.3] [Termination Attempts: Min: 11, Avg: 142.5, Max: 294, Diff: 283, Sum: 1140] [GC Worker Other (ms): Min: 0.0, Avg: 0.1, Max: 0.4, Diff: 0.3, Sum: 0.8] [GC Worker Total (ms): Min: 1795.9, Avg: 1796.1, Max: 1796.2, Diff: 0.3, Sum: 14368.9] [GC Worker End (ms): Min: 106416144.4, Avg: 106416144.5, Max: 106416144.5, Diff: 0.1]
...oh, well dang. Almost the entire time (1.792 s out of 1.820) is walking through the live objects and copying them. And wait, what about this line, showing the summary statistics:
Eden: 13.0G(13.0G)->0.0B(288.0M) Survivors: 1000.0M->936.0M Heap: 20.6G(24.0G)->7965.2M(24.0G)]
Good grief, we flushed out 13 GB (!!!) of freshly-allocated garbage in one swoop and compacted the leftovers! No wonder it was so slow. I wonder how we accumulated so much...
Oh, right...we set up for 24 GB of heap initially, and each minor GC clears most of the young generation. Okay, so we've set aside tons of space for trash to collect, which means longer GC periods. We can control GC pause time by setting the -XX:MaxGCPauseMillis
flag, but if we look up, most pauses are right under the 250 ms default value. For Jenkins on this hardware, this appears to work just fine.
A Few Final Settings
We mentioned StringDeduplication was on at Company C, what is the impact? This only triggers on Strings that have survived a few generations (most of our garbage does not), has limits on the CPU time it can use, and replaces duplicate references to their immutable backing character arrays. For more info, look here. So, we should be trading a little CPU time for improved memory efficiently (similarly to string interning).
At the beginning, this has a huge impact:
[GC concurrent-string-deduplication, 375.3K->222.5K(152.8K), avg 63.0%, 0.0 024966 secs]
[GC concurrent-string-deduplication, 4178.8K->965.5K(3213.2K), avg 65.3%, 0 .0272168 secs]
[GC concurrent-string-deduplication, 36.1M->9702.6K(26.6M), avg 70.3%, 0.09 65196 secs]
[GC concurrent-string-deduplication, 4895.2K->394.9K(4500.3K), avg 71.9%, 0 .0114704 secs]
This peaks at an average of about ~90%.
After running for a month, there's less of an impact. Many of the strings that can be deduplicated already are:
[GC concurrent-string-deduplication, 138.7K->39.3K(99.4K), avg 68.2%, 0.0007080 secs]
[GC concurrent-string-deduplication, 27.3M->21.5M(5945.1K), avg 68.1%, 0.0554714 secs]
[GC concurrent-string-deduplication, 304.0K->48.5K(255.5K), avg 68.1%, 0.0021169 secs]
[GC concurrent-string-deduplication, 748.9K->407.3K(341.7K), avg 68.1%, 0.0026401 secs]
[GC concurrent-string-deduplication, 3756.7K->663.1K(3093.6K), avg 68.1%, 0.0270676 secs]
[GC concurrent-string-deduplication, 974.3K->17.0K(957.3K), avg 68.1%, 0.0121952 secs]
However, it's cheap to use. On average, each dedup cycle takes 8.8 ms and removes 2.4 kB of duplicates. The median takes 1.33 ms and removes 17.66 kB from the old generation. A small change per cycle, but in aggregate it adds up quickly. In periods of heavy load, this can save hundreds of megabytes of data. That's still small, relative to multi-GB heaps.
Conclusion
Turn string deduplication on string deduplication is fairly cheap to use and reduces the steady-state memory needed for Jenkins. That frees up more room for the young generation and should overall reduce GC time by removing duplicate objects. I think it's worth turning on.
Jenkins uses soft references for caching build records and in pipeline FlowNodes. The only guarantee for these is that they will be removed instead of causing an OutOfMemoryError. However, Java applications can slow to a crawl long before that happens. The other limits are time and free memory, controlled by -XX:SoftRefLRUPolicyMSPerMB
(default 1000). They become eligible for garbage collection after this many milliseconds have elapsed since the last touch per MB of unused heap (vs. the maximum). The referenced objects don't count towards that target. So, with 10 GB of heap free and the default 1000 ms setting, soft references stick around for ~2.8 hours (!).
If the system is continuously allocating more soft references, we may have to grow the heap under heavy load, rather than clearing out soft references. See the open bug JDK-6912889 for more details.
If Jenkins consumes excessive old generation memory, it may help to make soft references easier to flush by reducing -XX:SoftRefLRUPolicyMSPerMB
from its default (1000) to something smaller (say 10-200).
Caveats
G1 vs. CMS: G1 was available on later releases of JRE 7, but unstable and slow. If you use it you absolutely must be using JRE 8, and the later the release the better (it's gotten a lot of patches). Googling around will show horrible G1 vs CMS benchmarks from around 2014: these are probably best ignored since the G1 implementation was still immature then. There's probably a niche for CMS use still, especially on midsized heaps (1-3 GB) or where settings are already tuned.
General GC tuning caveats: No single setting is perfect for everybody. We avoid tweaking settings that we don't have strong evidence for here, but there are of course many additional settings to tweak. One shouldn't change them without evidence, though, because it can cause unexpected side effects. The GC logs we enabled earlier will collect this evidence.
What Should I Do Before Tuning Jenkins GC?
If you've seen Stephen Connolly's excellent Jenkins World talk, you know that most Jenkins instances can and should get by with 4 GB or less of allocated heap, even up to very large sizes. You will want to turn on GC logging and look at stats over a few weeks (remember GCeasy.io). If you're not seeing spikes in pause times, you're probably okay. That said:
and may want to try using G1 with the 4 GB heap size for a more responsive system if it has 4 or more CPUs.
For this post we assume we've already done the basic performance work for Jenkins:
- Jenkins is running on fast, SSD-backed storage.
- We've set up build rotation for your Jobs, to delete old builds so they don't pile up.
- The weather column is already disabled for folders.
- All builds/deploys are running on build agents (formerly slaves), not on the master. If the master has executors allocated, they are exclusively used for backup tasks.
- We've verified that Jenkins really does need the large heap size and can't easily be split into separate masters.
If not, we need to do that first, before looking at GC tuning, because those will have larger impacts.
In conclusion, we've gone from:
- An average of 350 ms pauses (bad user experience) including less frequent two (or more) second generation pauses to an average pause of ~50 ms, with almost all under 250 ms.
- Reduced total memory footprint from String deduplication
How?
- Use Garbage First (G1) garbage collection, which performs generally very well for Jenkins
- Ensure that explicit
System.gc()
and metaspace resizing do not trigger a Full GC because this can trigger a very long pause. - Turn on parallel reference processing for Jenkins.
- Use String deduplication, which generates a tidy win for Jenkins.
There's still a little unpredictability, but using appropriate settings gives a much more stable and responsive CI/CD server, even up to 20 GB heap sizes!
Published at DZone with permission of Samuel Van Oort, DZone MVB. See the original article here.
Opinions expressed by DZone contributors are their own.
Comments