Build Vector Embeddings for Video via Python Notebook and OpenAI CLIP
Delve into AI's capabilities to analyze video data and how vector embeddings, created with Python and OpenAI CLIP, can help interpret and analyze video content.
Join the DZone community and get the full member experience.
Join For FreeAs AI continues to impact many types of data processing, vector embeddings have also emerged as a powerful tool for video analysis. This article delves into some of the capabilities of AI in analyzing video data. We'll explore how vector embeddings, created using Python and OpenAI CLIP, can be used to interpret and analyze video content. Discuss the significance of vector embeddings in video analysis, offering a step-by-step guide to building these embeddings using a simple example.
The notebook file used in this article is available on GitHub.
Tutorial
1. Create a SingleStore Cloud Account
A previous article showed the steps to create a free SingleStore Cloud account. We'll use the Free Shared Tier and take the default names for the Workspace and Database.
2. Import the Notebook
We'll download the notebook from GitHub (linked in the article introduction).
From the left navigation pane in the SingleStore cloud portal, we'll select DEVELOP > Data Studio.
In the top right of the web page, we'll select New Notebook > Import From File. We'll use the wizard to locate and import the notebook we downloaded from GitHub.
3. Run the Notebook
After checking that we are connected to our SingleStore workspace, we'll run the cells one by one.
We'll start by downloading an example video from GitHub and then playing the short video directly in the notebook. The example video is 142 seconds long.
Contrastive Language-Image Pretraining (CLIP) is a model by OpenAI that understands both images and text by associating them in a shared embedding space. We'll load it as follows:
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device = device)
We'll break down a video into its individual picture frames, as follows:
def extract_frames(video_path):
frames = []
cap = cv2.VideoCapture(video_path)
frame_rate = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
total_seconds = total_frames / frame_rate
target_frame_count = int(total_seconds)
target_frame_index = 0
for i in range(target_frame_count):
cap.set(cv2.CAP_PROP_POS_FRAMES, target_frame_index)
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
target_frame_index += int(frame_rate)
cap.release()
return frames
Next, we'll summarise what's happening in a picture in a simpler form:
def generate_embedding(frame):
frame_tensor = preprocess(PILImage.fromarray(frame)).unsqueeze(0).to(device)
with torch.no_grad():
embedding = model.encode_image(frame_tensor).cpu().numpy()
return embedding[0]
We'll now extract and summarise visual information from a video into a structured format for further analysis:
def store_frame_embedding_and_image(video_path):
frames = extract_frames(video_path)
data = [
(i+1, generate_embedding(frame), frame)
for i, frame in enumerate(tqdm(
frames,
desc = "Processing frames",
bar_format = "{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]")
)
]
return pd.DataFrame(data, columns = ["frame_number", "embedding_data", "frame_data"])
Let's examine the size characteristics of the data stored in the DataFrame:
embedding_lengths = df["embedding_data"].str.len()
frame_lengths = df["frame_data"].str.len()
# Calculate min and max lengths for embeddings and frames
min_embedding_length, max_embedding_length = embedding_lengths.min(), embedding_lengths.max()
min_frame_length, max_frame_length = frame_lengths.min(), frame_lengths.max()
# Print results
print(f"Min length of embedding vectors: {min_embedding_length}")
print(f"Max length of embedding vectors: {max_embedding_length}")
print(f"Min length of frame data vectors: {min_frame_length}")
print(f"Max length of frame data vectors: {max_frame_length}")
Example output:
Min length of embedding vectors: 512
Max length of embedding vectors: 512
Min length of frame data vectors: 1080
Max length of frame data vectors: 1080
Now, let's quantify how similar the query embedding is to each frame's embedding in the DataFrame, providing a measure of similarity between a query and the frames:
def calculate_similarity(query_embedding, df):
# Convert the query embedding to a tensor
query_tensor = torch.tensor(query_embedding, dtype = torch.float32).to(device)
# Convert the list of embeddings to a numpy array
embeddings_np = np.array(df["embedding_data"].tolist())
# Create a tensor from the numpy array
embeddings_tensor = torch.tensor(embeddings_np, dtype = torch.float32).to(device)
# Compute similarities using matrix multiplication
similarities = torch.mm(embeddings_tensor, query_tensor.unsqueeze(1)).squeeze().tolist()
return similarities
Now, we'll summarize the meaning of a text query in a simpler numerical form:
def encode_text_query(query):
# Tokenize the query text
tokens = clip.tokenize([query]).to(device)
# Compute text features using the pretrained model
with torch.no_grad():
text_features = model.encode_text(tokens)
# Convert the tensor to a NumPy array and return it
return text_features.cpu().numpy().flatten()
And enter the query string "Ultra-Fast Ingestion" when prompted:
query = input("Enter your query: ")
text_query_embedding = encode_text_query(query)
text_similarities = calculate_similarity(text_query_embedding, df)
df["text_similarity"] = text_similarities
We'll now get the top 5 best text matches:
# Retrieve the top 5 text matches based on similarity
top_text_matches = df.nlargest(5, "text_similarity")
print("Top 5 best matches:")
print(top_text_matches[["frame_number", "text_similarity"]].to_string(index = False))
Example output:
Top 5 best matches:
frame_number text_similarity
40 36.456184
39 36.081161
43 33.295975
42 32.423229
45 31.931164
We can also plot the frames:
def plot_frames(frames, frame_numbers):
num_frames = len(frames)
fig, axes = plt.subplots(1, num_frames, figsize = (15, 5))
for ax, frame_data, frame_number in zip(axes, frames, frame_numbers):
ax.imshow(frame_data)
ax.set_title(f"Frame {frame_number}")
ax.axis("off")
plt.tight_layout()
plt.show()
# Collect frame data and numbers for the top text matches
top_text_matches_indices = top_text_matches.index.tolist()
frames = [df.at[index, "frame_data"] for index in top_text_matches_indices]
frame_numbers = [df.at[index, "frame_number"] for index in top_text_matches_indices]
# Plot the frames
plot_frames(frames, frame_numbers)
Now, we'll summarise an image query in a simpler numerical form:
def encode_image_query(image):
# Preprocess the image and add batch dimension
image_tensor = preprocess(image).unsqueeze(0).to(device)
# Extract features using the model
with torch.no_grad():
image_features = model.encode_image(image_tensor)
# Convert features to NumPy array and flatten
return image_features.cpu().numpy().flatten()
Download an example image to use for a query:
image_url = "https://github.com/VeryFatBoy/clip-demo/raw/main/thumbnails/1_what_makes_singlestore_unique.png"
response = requests.get(image_url)
if response.status_code == 200:
display(Image(url = image_url))
image_file = PILImage.open(BytesIO(response.content))
image_query_embedding = encode_image_query(image_file)
image_similarities = calculate_similarity(image_query_embedding, df)
df["image_similarity"] = image_similarities
else:
print("Failed to download the image, status code:", response.status_code)
We'll now get the top 5 best image matches:
top_image_matches = df.nlargest(5, "image_similarity")
print("Top 5 best matches:")
print(top_image_matches[["frame_number", "image_similarity"]].to_string(index = False))
Example output:
Top 5 best matches:
frame_number image_similarity
7 57.674603
9 43.669739
6 42.573799
15 40.296551
93 40.201733
We can also plot the frames:
# Collect frame data and numbers for the top image matches
top_image_matches_indices = top_image_matches.index.tolist()
frames = [df.at[index, "frame_data"] for index in top_image_matches_indices]
frame_numbers = [df.at[index, "frame_number"] for index in top_image_matches_indices]
# Plot the frames
plot_frames(frames, frame_numbers)
Now let's combine both text and image by using element-wise averaging:
# Normalise
text_query_embedding /= np.linalg.norm(
text_query_embedding,
axis = -1,
keepdims = True
)
image_query_embedding /= np.linalg.norm(
image_query_embedding,
axis = -1,
keepdims = True
)
combined_query_embedding = (text_query_embedding + image_query_embedding) / 2
combined_similarities = calculate_similarity(combined_query_embedding, df)
df["combined_similarity"] = combined_similarities
We'll now get the top 5 best-combined matches:
top_combined_matches = df.nlargest(5, "combined_similarity")
print("Top 5 best matches:")
print(top_combined_matches[["frame_number", "combined_similarity"]].to_string(index = False))
Example output:
Top 5 best matches:
frame_number combined_similarity
7 4.304160
6 3.673842
5 3.613622
93 3.595592
94 3.559316
We can also plot the frames:
# Collect frame data and numbers for the top combined matches
top_combined_matches_indices = top_combined_matches.index.tolist()
frames = [df.at[index, "frame_data"] for index in top_combined_matches_indices]
frame_numbers = [df.at[index, "frame_number"] for index in top_combined_matches_indices]
# Plot the frames
plot_frames(frames, frame_numbers)
Next, we'll store the data in SingleStore. First, we'll prepare the data:
frames_df = df.copy()
frames_df.drop(
columns = ["text_similarity", "image_similarity", "combined_similarity"],
inplace = True
)
query_string = combined_query_embedding.copy()
We'll also need to perform a little data cleanup:
def process_data(arr):
return np.array2string(arr, separator = ",").replace("\n", "")
frames_df["embedding_data"] = frames_df["embedding_data"].apply(process_data)
frames_df["frame_data"] = frames_df["frame_data"].apply(process_data)
query_string = process_data(query_string)
We'll check if we are running on the Free Shared Tier:
shared_tier_check = %sql SHOW VARIABLES LIKE "is_shared_tier"
if not shared_tier_check or shared_tier_check[0][1] == "OFF":
%sql DROP DATABASE IF EXISTS video_db;
%sql CREATE DATABASE IF NOT EXISTS video_db;
And then get a connection to the database:
from sqlalchemy import *
db_connection = create_engine(connection_url)
We'll ensure a table is available to store the data:
DROP TABLE IF EXISTS frames;
CREATE TABLE IF NOT EXISTS frames (
frame_number INT(10) UNSIGNED NOT NULL,
embedding_data VECTOR(512) NOT NULL,
frame_data TEXT,
KEY(frame_number)
);
Then write the DataFrame to SingleStore:
frames_df.to_sql(
"frames",
con = db_connection,
if_exists = "append",
index = False,
chunksize = 1000
)
We can read some data back from SingleStore:
SELECT frame_number,
SUBSTRING(embedding_data, 1, 50) AS embedding_data,
SUBSTRING(frame_data, 1, 50) AS frame_data
FROM frames
LIMIT 1;
We can also create an ANN index:
ALTER TABLE frames ADD VECTOR INDEX (embedding_data)
INDEX_OPTIONS '{
"index_type":"AUTO",
"metric_type":"DOT_PRODUCT"
}';
First, let's run a query without using the ANN index:
SELECT frame_number,
embedding_data <*> :query_string AS similarity
FROM frames
ORDER BY similarity USE INDEX () DESC
LIMIT 5;
Example output:
frame_number similarity
7 4.304159641265869
6 3.673842668533325
5 3.6136221885681152
93 3.5955920219421387
94 3.5593154430389404
Now, we'll run a query using the ANN index:
SELECT frame_number,
embedding_data <*> :query_string AS similarity
FROM frames
ORDER BY similarity DESC
LIMIT 5;
Example output:
frame_number similarity
7 4.304159641265869
6 3.673842668533325
5 3.6136221885681152
93 3.5955920219421387
94 3.5593154430389404
We can also use Python as an alternative:
sql_query = """
SELECT frame_number, embedding_data, frame_data
FROM frames
ORDER BY embedding_data <*> %s DESC
LIMIT 5;
"""
new_frames_df = pd.read_sql(
sql_query,
con = db_connection,
params = (query_string,)
)
new_frames_df.head()
Since we are only storing a small quantity of data (142 rows), the results are identical whether we use the ANN index or not. Our results from querying the database agree with our earlier results for the combined query.
Summary
In this article, we applied vector embeddings for video analysis using Python and OpenAI's CLIP model. We saw how to extract frames from a video, generate embeddings for each frame, and use these embeddings to perform similarity searches based on text and image queries. This allowed us to retrieve relevant video segments, making it a useful tool for video content analysis.
Today, many modern LLMs are offering multimodal capabilities and quite extensive support for audio, images, and video. However, the example in this article showed that it is possible to use freely available software to achieve some of the same capabilities.
Published at DZone with permission of Akmal Chaudhri. See the original article here.
Opinions expressed by DZone contributors are their own.
Comments