10 Best Data Analysis and Machine Learning Libraries/Tools
If you are looking for the best Python libraries for data science, machine learning, data analysis, and deep learning then you have come to the right place.
Join the DZone community and get the full member experience.
Join For FreeHello Devs, if you want to become a data scientist or Machine Learning (ML)engineer and looking for the best Python libraries for data science, machine learning, data analysis, and deep learning then you have come to the right place.
Data Scientist needs a tool to clean and transform data as well as tools to analyze and visualized data, these 10 tools help you to become a better data scientist
Earlier, I have shared the best tools and resources to learn ML, Artificial Intelligence (AI), and Deep Learning, and in this article, I am going to share the best libraries python developers can learn for data science and machine learning.
But if you are a beginner in the field of Data Science and ML then let me congratulate you for making the right decision and learning these in-demand skills but learning these skills is not easy, there are a lot of choices to make and each choice has its own consequences.
When I started my journey in ML and Data Science, I had to first make a choice about choosing the right programming language as both R and Python were doing great.
I eventually chose Python because of a bigger community, general-purpose in nature, and some prior experience in writing Python code. But, there was one more reason which helps me to choose Python for Data Science and ML, the wide range of awesome libraries available in Python.
Today, I am going to introduce you to some of those awesome libraries like TensorFlow, NumPy, Pandas, SciPy, Scikit-learn, Seaborn, Keras, and Matplotlib. I know there are many more libraries but with my limited experience and exposure, I have heard of these main libraries so far.
I'll definitely add new libraries to this list as and when I come across but till then knowing these libraries will help you a lot, particularly if you are also learning Data Science, Artificial Intelligence, and Machine learning using Python.
Whether you are a beginner or already know Data Science, learning these libraries can make you more productive and enhance your profile. By the way, if you are a complete beginner, I suggest you start with a hands-on course to learn both Python and Data Science from scratch.
10 Best Python libraries for Data Science, Analysis, Visualization, and Machine learning
Without any further ado, here is a basic introduction to some of the most popular Python libraries for Data Science and Machine learning. I have tried to keep the explanation short and sweet and pointed it out to the resource to learn more just for the sake of brevity and clarity.
As I am also learning Python and Machine learning, will write in detail about each of these libraries in the future because you would need at least one post to explain them in a little bit of detail.
1. TensorFlow
This is one of the most popular machine learning libraries and there is a good chance that you might have already heard about it. You might know that TensorFlow is from Google and was invented by their Brains team and used in the RankBrain algorithm which powers millions of search questions on Google's search engine.
In general, it is a symbolic math library and is also used for machine learning applications such as neural networks. There are many applications of TensorFlow and a lot of stories you can find on the web like how a Japanese farmer used TensorFlow to filter Cucumber.
2. Keras
One of the main problems with creating machine learning and deep learning-based solutions is that Implementing them can be tedious to create and require you to write many lines of complex code. Keras is a library that makes it much easier for you to create these deep learning solutions.
In a few lines of code, you can create a model that could require hundreds of lines of conventional code.
3. Scikit-learn
This is another popular Python library for machine learning. In fact, Scikit-learn is the primary library for machine learning. It has algorithms and modules for pre-processing, cross-validation, and other such purposes.
Some of the algorithms deal with regression, decision trees, ensemble modeling, and non-supervised learning algorithms like clustering.
4. NumPy
NumPy is another wonderful Python library for machine learning and heavy computation. NumPy facilitates easy and efficient numeric computation. It has many other libraries built on top of it like Pandas.
You should at least make sure to learn NumPy arrays, which are basic and has a lot of applications in machine learning, data science, and artificial intelligence-based programs.
5. SciPy
This is a python library for scientific and technical computing. It will provide you with all the tools you need for scientific and technical computing.
It has modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers, and other tasks.
There is a wonderful FREE course to learn SciPy with Python, Deep Learning Prerequisites: The Numpy Stack in Python. It's my favorite and more than 100K other developers have also enrolled in it. You can check this out before it converts to the paid course.
6. Matplotlib
If you need plotting then Matlotlib is one option. It provides a flexible plotting and visualization library, Matplotlib is powerful. However, it is cumbersome, so, you may go for Seaborn instead.
7. Pandas
This is one of the Python libraries which is built on top of NumPy. It comes in handy with data structures and exploratory analysis. Another important feature it offers is DataFrame, a 2-dimensional data structure with columns of potentially different types.
Pandas will be one of the most important libraries you will need all the time and that's why it's very important to learn Pandas well.
8. Seaborn
Like Matplotlib, it's also a good library for plotting but with Seaborn, it is easier than ever to plot common data visualizations.
It is built on top of Matplotlib and offers a more pleasant, high-level wrapper. You should learn effective data visualization.
9. OpenCV
This is another important library for Python developers for computer vision. If you don't know, Computer Vision is one of the most exciting fields in Machine Learning and AI.
It has applications in many industries, such as self-driving cars, robotics, augmented reality, and much more and OpenCV is the best computer vision library.
Although you can use OpenCV with many programming languages like C++, its python version is beginner-friendly and easy to use which makes it a great library to included in this list.
If you want to learn Python and OpenCV for basic image processing and perform image classification and object detection and need a course then I highly recommend you to join a hands-on course that will teach you an Open CV with several labs and exercises.
10. PyTorch
This is another exciting and powerful Python library for data science and Machine learning and something which every data scientist should learn.
If you don't know PyTorch is one of the best deep learning libraries developed by Facebook which can be used in deep learning applications like face recognition self-driving cars, and so on.
You can also use Pytorch to build machine learning models like NLP and computer vision, just to name a few. You can also use PyTorch to create deep neural networks.
Conclusion
That's all about some of the best Python libraries for Data Science, Machine Learning, and Artificial Intelligence. Depending upon what exactly you are doing with machine learning and data science, you can choose these libraries to help you out.
If you are starting afresh, I suggest you learn TensorFlow or Scikit-learn, two of the most popular and primary libraries for machine learning.
Thanks for reading this article so far. If you find these best Python libraries for machine learning, data science, and Artificial Intelligence useful then please share them with your friends and colleagues. If you have any questions or feedback then please drop a note.
P. S. - If you are new to Data Science and Machine Learning and looking for free online courses to learn then you can also check out these free Data Science and Machine Learning courses to start your career in this lucrative field.
Opinions expressed by DZone contributors are their own.
Comments